муниципальное общеобразовательное учреждение «Средняя школа с углубленным изучением отдельных предметов № 6 Центрального района Волгограда»

РАССМОТРЕНО

на заседании кафедры естественно-математической направленности обучения Протокол №1 от 26.08.2025 г. Руководитель кафедры О.В. Подзорова

СОГЛАСОВАНО

на заседании научнометодического Совета Протокол №1 от 27.08.2025

Зам/директора по УВР

УТВЕРЖДЕНО

на заседании педагогического Совета Протокол №1 от 29.08.2025 (Приказ МОУ СШ №6 от 29.08.2025 №232)

Директор МОУ СШ №6 А.Ю. Гаврилова

РАБОЧАЯ ПРОГРАММА

учебного кур са «Решение задач повышенной сложности по стереометрии»

для обучающихся 10a класса на 2025/2026 учебный год

Учитель: Бычкова Инна Владимировна

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа учебного курса ««Решение задач повышенной сложности по стереометрии» предназначена для учащихся 10 профильного класса. Она направлена на углубление, обобщение знаний и умений учащихся по математике, а также на расширение и знакомство учащихся с одним из важнейших направлений развития современной математики — стереометрией. Для её реализации достаточно знаний и умений по геометрии, полученных в основной школе.

Актуальность предлагаемой программы определяется следующими соображениями:

математика является профилирующим предметом на вступительных экзаменах в вузы по широкому спектру специальностей. В старших классах углубление основного курса выполняет функции подготовки к продолжению образования и к сдаче экзамена по математике в форме ЕГЭ. Углубление реализуется на базе обучения методам и приемам решения математических задач, требующих применения высокой логической и операционной культуры, развивающих научно — теоретическое и алгоритмическое мышление учащихся.

Предметом данного учебного курса является достаточно сложный раздел школьной программы — геометрия. Как показывает практика, геометрические задачи вызывают наибольшие затруднения у учащихся при сдаче ЕГЭ по математике.

Педагогическая целесообразность предлагаемой программы объясняется следующими мотивами:

итоги ежегодного ЕГЭ показывают, что учащиеся плохо справляются с этими заданиями или вообще не приступают к ним. Можно выделить следующие недостатки в подготовке выпускников: формальное усвоение теоретического содержания курса геометрии, неумение использовать изученный материал в ситуации, которая отличается от стандартной. Для успешного выполнения этих заданий необходимы прочные знания основных геометрических фактов и опыт в решении геометрических задач. При изучении математики в старших классах на профильном уровне необходимы систематизация знаний, полученных учащимися в основной школе, выделение общих методов и приемов решения геометрических задач, демонстрация техники решения геометрических задач, закрепление навыков решения геометрических задач. В связи с этим необходимо делать акцент не только на овладение теоретическими фактами, но и на развитие умений решать геометрические задачи разного уровня сложности и математически грамотно их записывать. Повторение геометрического материала по разделам позволяет реализовать широкие возможности для дифференцированного обучения учащихся.

Цель учебного курса состоит в формировании теоретических знаний, развития логического аппарата учащихся для дальнейшего осознанного и обоснованного решения задач.

Задачи программы учебного курса:

- формирование у учащихся верного и наглядного изображения пространственных фигур на плоскости;

- развитие пространственного воображения, умения представлять геометрический объект;
- выработка умений корректно аргументировать утверждения, возникающие по ходу решения любой геометрической задачи;
 - знакомство учащихся с различными методами решения геометрических задач;
 - совершенствование навыков решения задач;
 - знакомство учащихся с историей измерения длины;
 - организация работы с дополнительной литературой;
 - развитие мыслительных, творческих способностей учащихся;
 - знакомство учащихся с элементами исследовательской деятельности.

Отличительные особенности данного учебного курса:

тематика задач, предлагаемых при изучении данного учебного курса, выходит за рамки основного курса, и уровень их сложности – повышенный.

Поскольку изучение курса геометрии дает возможность учащимся приобрести опыт дедуктивных рассуждений, учит их умению доказывать основные теоремы курса, проводить доказательные рассуждения в ходе решения задач, то в профильном (углубленном) обучении математики данная линия приобретает еще большую значимость в связи с расширением содержательной составляющей курса геометрии. Рассмотрение избранных теорем геометрии, выходящих за рамки основного курса, а также решение избранных задач различными методами подчеркивают красоту содержания учебного предмета, способствуют воспитанию эстетического восприятия геометрии, помогает выбирать из всех известных методов решения или доказательства наиболее рациональный.

Новизна программы состоит в том, что значительное место отведено решению задач, отвечающих требованиям ЕГЭ и повышенной сложности. Содержание данной программы представлено несколькими разделами. Особое внимание в программе уделяется умению «видеть» и находить расстояния между точками, прямыми и плоскостями в различных геометрических комбинациях. Учебный курс «Решение задач повышенной сложности по стереометрии» позволяет самостоятельно ориентироваться не только в поиске решения проблемных ситуаций, но и переносить приобретенные знания, умения и навыки к поисково-исследовательской деятельности в работе над задачами.

Программа учебного курса рассчитана на 34 (1 ч. в неделю) часа.

Форма занятия: групповая и индивидуальная.

Ожидаемые результаты и способы определения их результативности

В результате изучения программы данного элективного курса учащиеся должны:

- правильно употреблять новые термины, связанные с основными понятиями;
- знать основные аксиомы и теоремы стереометрии, признаки и свойства геометрических фигур;
 - правильно анализировать условия задач;
 - уметь выполнять грамотный чертеж к задаче;
 - уметь исследовать поставленную задачу;

- уметь логически правильно строить свои рассуждения;
- уметь строить искомый перпендикуляр двух скрещивающих прямых;
- умения решать геометрические задачи различными методами;
- применять полученные знания при решении задач;
- использовать символический язык для записи решений геометрических задач.

Основными формами проведения итогов реализации данной образовательной программы являются следующие:

- зачеты, контрольные работы, исследовательские работы.

Данная программа может быть использована в классах с углубленным или профильным изучением математики.

УЧЕБНО - ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Nº	Содержание темы	Кол-во часов	Виды занятий
I	Обобщение курса планиметрии	4	
1	Решение опорных задач планиметрии	2	
2	Решение задач координатно-векторным	2	
	способом.		Урок-лекция.
II	Расстояния и многогранники в	13	
	задачах.		Уроки-практикумы.
1	Нахождение расстояния от точки до прямой.	1	V
2	Нахождение расстояния от точки до прямой	2	Урок обобщения.
	координатным методом.		
3	Нахождение расстояния от точки до плоскости	1	
4	Нахождение расстояния от точки до плоскости	2	
	координатным методом.		
5	Теорема о существовании и единственности	2	
	общего перпендикуляра скрещивающихся		
	прямых. Общий перпендикуляр двух		
	скрещивающихся прямых	2	
6	Нахождение расстояния между	2	
7	скрещивающимися прямыми.	2	
7	Нахождение расстояния между	2	
	скрещивающимися прямыми координатным		
8	методом. Контрольная работа № 1	1	Урок самостоятельного
O	Trontposibility pubble 3/2 1	1	решения задач.
III	Углы и многогранники в задачах.	17	
1	Нахождение угла между двумя плоскостями.	3	
2	Нахождение угла между двумя плоскостями	2	Урок-лекция.
	координатным методом.		
3	Нахождение угла между прямой и плоскостью.	2	Уроки-практикумы.
4	Нахождение угла между прямой и плоскостью	2	
	координатным методом.		Урок обобщения.
5	Нахождение угла между скрещивающимися	3	
	прямыми.		
6	Нахождение угла между скрещивающимися	3	

	прямыми координатным методом.		
7	Контрольная работа №2	1	Урок самостоятельного
			решения задач.
8	Итоговое занятие	1	

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА

Раздел 1. Обобщение курса планиметрии(4 ч)

1.1.Решение опорных задач планиметрии. Решение задач координатно-векторным способом.

Основная цель - вспомнить с учащимися основные свойства многоугольников, теоремы, помогающие решать задачи.

Многоугольники; основные свойства медиан, биссектрис, высот в равнобедренных, равносторонних, прямоугольных треугольниках; формулы площадей многоугольников; вписанные и описанные многоугольники и окружности; теоремы о касательной к окружности, о четырёхугольниках и окружностях; решение задач.

В результате изучения данного раздела учащиеся должны аргументировать утверждения при решении задач, правильно пользоваться определениями и свойствами фигур. Учащиеся должны знать и при необходимости использовать специальные свойства многоугольников.

Задания для самостоятельной работы:

- 1. Точка C середина отрезка AB, точка M середина отрезка BC, а точка B середина отрезка AK. Сколько процентов длина отрезка KM составляет от длины отрезка AK?
- 2. Отрезки A, C, K, B лежат на одной прямой, причем AB=22, AC=11, KB=7. Найдите наименьшую длину отрезка СК.
- 3. Периметр треугольника MPK равен 32. Точка H лежит на стороне MK этого треугольника так, что сумма периметров треугольников MPH и KPH равна 44. Найдите длину отрезка PH.
- 4. Периметр равнобедренного треугольника АКС равен 143 см, а АК : AC = 5 : 3. Найдите все возможные значения длины отрезка АС.
- 5. Диагонали РН и ВС выпуклого четырехугольника ВРСН пересекаются под прямым углом. Найдите расстояние между серединами сторон РС и ВН равно 7 м.
- 6. Точка К лежит на основании АС равнобедренного треугольника ABC. Найдите площадь этого треугольника, если длина его боковых сторон AB и BC равны 11, а расстояния от точки M до этих сторон равны соответственно 3 и 7.
- 7. В треугольнике ABC известны длины сторон: AB= $4\sqrt{7}$, AC= $5\sqrt{7}$; BC= $6\sqrt{7}$. Найдите расстояние от вершины B до точки пересечения высот треугольника ABC.
- 8. Около окружности с радиусом 5 описана равнобедренная трапеция. Расстояние между точками касания ее боковых сторон равно 8. Найдите площадь трапеции.

Ответы: **1**. 62,5%; **2.** 4; **3**. Невозможно определить; **4**. 33 см и 39 см; **5**. 7 м; **6**. 55; **7**. 9; **8**. 125.

Литература:

- 1. Звавич, Л.И. Тематические тестовые задания 7-9 классы (ЕГЭ: шаг за шагом) / Л.И. Звавич, Е.В. Потоскуев // М. : Дрофа, 2011. 189 с.
- 2. Черняк, А.А. Геометрия. 7 11 классы (ЕГЭ: шаг за шагом) / А.А. Черняк, Ж.А. Черняк // М.: Дрофа, 2011.-247 с.

Раздел 2. Расстояния и многогранники в задачах (13 ч.)

2.1. Расстояние от точки до прямой в пространстве. Расстояние от точки до плоскости. Общий перпендикуляр двух скрещивающихся прямых. Расстояние между двумя скрещивающимися прямыми. Теоретический зачет.

Основная цель - изучить приемы нахождения расстояний между двумя точками; между точкой и фигурой; между двумя фигурами; изучить приемы нахождения этих расстояний. Формировать умения «видеть» и вычислять различные расстояния в пространстве, используя многогранники и многоугольники, расположенные в пространстве; решать задачи метрического характера на нахождение расстояний, углов, площадей, используя куб, правильную пирамиду, правильный тетраэдр, параллелепипед, корректно аргументируя каждый шаг построения изображения, доказательной и вычислительной частей решения задачи; используя геометрические места точек в пространстве, осуществлять пропедевтическую работу по подготовке учащихся к решению содержательных задач в 11 классе при изучении многогранников и фигур вращения.

В результате изучения данного раздела учащиеся должны определять расстояния: от точки до прямой и до плоскости; между двумя параллельными плоскостями; между двумя скрещивающимися прямыми; знать основные геометрические места точек в пространстве;

Задачи для самостоятельной работы:

- 1. Точка H середина ребра PB правильного тетраэдра PABC. Опустите перпендикуляры из точки H: а) на прямую AC; б) на высоту PO тетраэдра, O ϵ (ABC). Найдите длину каждого перпендикуляра, если ребро тетраэдра равно $2\sqrt{2}$. *Ответ*: а) 2; б) $\frac{\sqrt{6}}{3}$.
- 2. Расстояние между скрещивающимися диагоналями двух смежных граней куба равно m. Найдите ребро этого куба. *Ответ:* $m\sqrt{3}$.
- 3. В кубе $ABCDA_1B_1C_1D_1$ найдите расстояние до прямой BD от вершин: а) B_1 ; б) A_1 ; г) C_1 , если ребро куба равно 6.

Omeem: a) 6; 6) $3\sqrt{2}$; B) $3\sqrt{6}$; Г) $3\sqrt{6}$.

4. ABCDEFA $_1$ B $_1$ C $_1$ D $_1$ E $_1$ F $_1$ – правильная шестиугольная призма, все ребра которой равны 1. Найдите расстояние: от вершины С до прямой AC $_1$.

Oтвет:
$$\frac{\sqrt{7}}{4}$$
.

5. Точка H — середина ребра PB правильного тетраэдра PABC. Опустите перпендикуляр из точки H на плоскость ABC и найдите длину этого перпендикуляра, если ребро тетраэдра равно $2\sqrt{6}$. *Ответ*: 2.

6. ABCDEFA₁B₁C₁D₁E₁F₁ — правильная шестиугольная призма, все ребра которой равны 1. Найдите расстояние: от точки A до плоскости C₁BD. *Ответ*: $\frac{2\sqrt{5}}{5}$.

Контрольная работа

Вариант №1

- 1. В кубе ABCDA₁B₁C₁D₁ найдите расстояние до AB₁ от вершин: а) C₁; б) В; в) С, если ребро куба равно 8. *Ответ*: а) 8; б) $4\sqrt{2}$; в) $4\sqrt{6}$.
- 2. ABCDEFA₁B₁C₁D₁E₁F₁ правильная шестиугольная призма, все ребра которой равны 1. Найдите расстояние:1) между вершинами A и C; 2) между вершиной A и серединой H отрезка C₁E₁. *Ответ*: 1) $\sqrt{3}$; 2) $\frac{\sqrt{13}}{2}$.
- 3. В кубе $ABCDA_1B_1C_1D_1$ найдите расстояние до A_1BC_1 от вершин: а) B_1 ; б) D_1 ; в) D, если ребро куба равно 9. *Ответ*: а) $3\sqrt{3}$; б) $3\sqrt{3}$; в) $6\sqrt{3}$.
- 4. ABCDEFA₁B₁C₁D₁E₁F₁ правильная шестиугольная призма, все ребра которой равны 1. Найдите расстояние:от точки В до плоскости A₁EF. $Omsem: \frac{2\sqrt{21}}{7}.$
- 5. PABC правильный тетраэдр с ребром, равным 22. Найдите расстояние между прямыми: АС и ВР. Omsem: $11\sqrt{2}$.
- 6. ABCDEFA₁B₁C₁D₁E₁F₁ правильная шестиугольная призма, все ребра которой равны 1. Найдите расстояние между прямыми F₁Bu EF. *Ответ*: $\frac{\sqrt{3}}{2}$.

Вариант №2

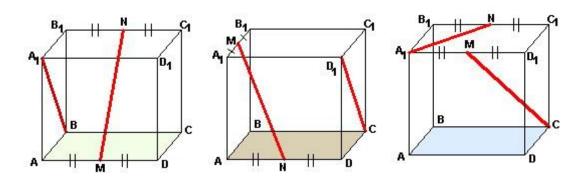
- 1. В кубе $ABCDA_1B_1C_1D_1$ найдите расстояние до BD_1 от вершин: а) A_1 ; б) D; в) C_1 , если ребро куба равно 8.Ответ: а) $\frac{8\sqrt{6}}{3}$; б) $\frac{8\sqrt{6}}{3}$; в) $\frac{8\sqrt{6}}{3}$.
- 2. ABCDEFA₁B₁C₁D₁E₁F₁ правильная шестиугольная призма, все ребра которой равны 1. Найдите расстояние:1) между вершинами A и C₁; 2) между вершиной A и серединой K отрезка B₁F₁. *Ответ*: 1) 2; 2) $\frac{\sqrt{5}}{2}$.
- 3. В кубе $ABCDA_1B_1C_1D_1$ найдите расстояние до AB_1C от вершин: а) B; б) C_1 ; в) D_1 , если ребро куба равно 6. *Ответ*: а) $2\sqrt{3}$; б) $2\sqrt{3}$; в) $4\sqrt{3}$.
- 4. ABCDEFA₁B₁C₁D₁E₁F₁ правильная шестиугольная призма, все ребра которой равны 1. Найдите расстояние: от точки B до плоскости AB_1C . *Ответ*: $\frac{\sqrt{5}}{5}$.
- 5. PABC правильный тетраэдр с ребром, равным 22. Найдите расстояние между прямыми: AP и BC. *Ответ*: $11\sqrt{2}$.
- 6. ABCDEFA₁B₁C₁D₁E₁F₁ правильная шестиугольная призма, все ребра которой равны 1. Найдите расстояние между прямыми A₁B и C₁D. $Omsem: \frac{3\sqrt{5}}{5}.$

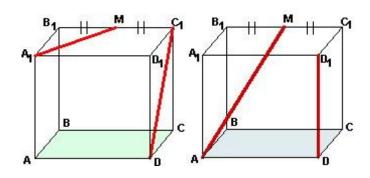
Литература:

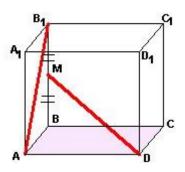
- 1. Варшавский, И.К. Стереометрия на едином государственном экзамене. / И.К.Варшавский, М.Я. Гаиашвили, Ю.А. Глазков // Математика в школе 2006. №4 С. 2-7.
- 2. Елизарова, Н.Г. О расстоянии от точки до плоскости. / Н.Г. Елизарова, Р.С. Понарядова // Математика в школе -2009. № 4-C. 67-73.
- 3. Кожухов С.К. О некоторых способах вычисления расстояния между скрещивающимися прямыми / С.К. Кожухов, В.К. Володин // Математика в школе 2008. №1. С.15-17.
- 4. Потоскуев Е.В. Решение задач по стереометрии. Практикум. Подготовка к ЕГЭ. М.: Илекса, 2012. 108 с.
- 5. Смирнов В.А. ЕГЭ 2011. Математика. Задача С2. Геометрия. Стереометрия / Под ред. А.Л. Семенова и И.В. Ященко. М.: МЦНМО, 2011. 64 с.

Раздел 3. Углы и многогранники в задачах (17 ч.)

3.1 Взаимное расположение двух прямых в пространстве. Угол между прямой и плоскостью. Угол между двумя плоскостями. Угол между двумя скрещивающимися прямыми. Теоретический зачет.


Основная цель - изучить способы нахождения углов между двумя прямыми; между прямой и плоскостью; между двумя плоскостями; между двумя скрещивающимися прямыми. Формировать умения «видеть» и вычислять углы в пространстве, используя многогранники и многоугольники, расположенные в пространстве; решать задачи метрического характера на нахождение расстояний, углов, площадей, используя куб, правильную пирамиду, правильный тетраэдр, параллелепипед, корректно аргументируя каждый шаг построения изображения, доказательной и вычислительной частей решения задачи.


В результате изучения данного раздела учащиеся должны вычислять углы: между двумя прямыми; между прямой и плоскостью; между двумя скрещивающимися прямыми; между двумя плоскостями.


Задачи для контрольной работы:

- 1. В кубе А...D1 найдите угол между плоскостями ADD1 и CDD1.
- 2. В кубе А...D1 найдите угол между плоскостями ABC и AB1C1.
- 3. В кубе А...D1 найдите угол между плоскостями ABC и BDD1.
- 4. В кубе А...D1 найдите угол между плоскостями ACC1 и BDD1.
- 5. В кубе А...D1 найдите тангенс угол между плоскостями A1B1C1 и BDC1.
- 6. В кубе А...D1 найдите косинус угла между плоскостями BDA1 и BDC1.

- 7. В кубе А...D1 найдите угол между плоскостями BCD1 и ACC1.
- 8. Найдите углы между прямыми:

Литература:

- 1. Потоскуев Е.В. Решение задач по стереометрии. Практикум. Подготовка к ЕГЭ. М.: Илекса, 2012. 108 с.
- 2. Семёнов А.Л., Ященко И.В. Геометрия. Стереометрия: Пособие для подготовки к ЕГЭ / Под ред. А.Л. Семёнова, И.В. Ященко. М.: МЦНМО, 2009. 272 с. (Готовимся к ЕГЭ).
- 3. Смирнов В.А. ЕГЭ 2011. Математика. Задача С2. Геометрия. Стереометрия / Под ред. А.Л. Семенова и И.В. Ященко. М.: МЦНМО, 2011. 64 с.

Координатный метод решения задач на нахождение расстояний и углов

Декартова прямоугольная система координат в пространстве. Декартовы прямоугольные координаты точки. Формулы нахождения: расстояния между точками в координатах; точки координаты точки, делящей отрезок в данном отношении, середины отрезка. Решение простейших задач стереометрии в координатах. Взаимное расположение прямой и плоскости в координатах. Расстояние от точки до плоскости. Расстояние между

двумя скрещивающимися прямыми. Нахождение угла между прямыми в пространстве. Нахождение угла между прямой и плоскостью. Нахождение угла между двумя плоскостями.

Основная цель - формировать умения учащихся с помощью уравнений прямых и плоскостей решать задачи стереометрии на нахождения расстояний и углов, используя в качестве объектов правильный тетраэдр, правильную пирамиду, куб, призму.

В результате изучения данного раздела ученик должен в координатной форме знать и понимать выражение скалярного произведения и условие перпендикулярности двух векторов; условие компланарности трех векторов; формулу вычисления длины вектора, а также формулу расстояния между двумя точками, деления отрезка в данном отношении. Формулу для вычисления расстояния от данной точки до данной плоскости. Формулы для нахождения углов. Уметь: находить длину вектора, расстояние между двумя точками и координаты точки, делящей данный отрезок в данном отношении; вычислять скалярное произведение двух векторов и определять, перпендикулярны ли они; вычислять расстояние: от данной точки до данной плоскости (прямой); между параллельными плоскостями; между параллельными прямой и плоскостью. Находить углы между прямыми, прямой и плоскостью, двумя плоскостями. С помощью уравнений прямых и плоскостей решать метрические задачи стереометрии.

Литература:

- Варшавский, И.К. Стереометрия на едином государственном экзамене. / И.К.Варшавский, М.Я. Гаиашвили, Ю.А. Глазков // Математика в школе – 2006.
 №4 – С. 2-7.
- 2. Потоскуев Е.В. Решение задач по стереометрии. Практикум. Подготовка к ЕГЭ. М.: Илекса, 2012. 108 с.
- 3. Семёнов А.Л., Ященко И.В. Геометрия. Стереометрия: Пособие для подготовки к ЕГЭ / Под ред. А.Л. Семёнова, И.В. Ященко. М.: МЦНМО, 2009. 272 с. (Готовимся к ЕГЭ).
- 4. Смирнов В.А. ЕГЭ 2011. Математика. Задача С2. Геометрия. Стереометрия / Под ред. А.Л. Семенова и И.В. Ященко. М.: МЦНМО, 2011. 64 с.